ALLOGIBBERIC ACID: AN INHIBITOR OF FLOWERING IN LEMNA PERPUSILLA

ROBERT J. PRYCE

Shell Research Limited, Milstead Laboratory of Chemical Enzymology, Sittingbourne Laboratories, Sittingbourne, Kent ME9 8AG

(Received 15 January 1973. Accepted 19 February 1973)

Key Word Index—Lemna perpusilla 6746; Lemnaceae; duckweed; gibberellic acid; autoclaving; decomposition products; allogibberic acid; 13-deoxyallogibberic acid; flowering inhibition; bioassay.

Abstract—Allogibberic acid (I) has been identified as the compound responsible for the inhibition of flowering, increase in frond multiplication rate and decrease in frond size produced in *Lemna perpusilla* 6746 by autoclaved, unbuffered aqueous solutions of gibberellic acid (VII). 13-Deoxyallogibberic acid (IV), a product of autoclaving aq. GA₇ (VIII) solutions, also inhibits flowering in *L. perpusilla* and is about 10 times more active than allogibberic acid.

INTRODUCTION

AUTOCLAVED, unbuffered aqueous solutions of gibberellic acid (GA₃) (VII) have been shown by Hodson and Hamner¹ to inhibit flowering, increase the frond multiplication rate and decrease frond size in the short-day duckweed *Lemna perpusilla* Torr., strain 6746. Non-autoclaved GA₃ had a similar but much smaller effect; this suggested production of active substance(s) on autoclaving.¹ These results confirmed a previous suggestion by Hillman² based on his earlier work with autoclaved aqueous GA₃ solutions alone.³

I have analysed the decomposition of aq. GA₃ solutions on autoclaving.⁴ Each of the GA₃ decomposition products produced on autoclaving found previously⁴ has now been

- ¹ HODSON, H. K. and HAMNER, K. C. (1971) Plant Physiol. 47, 726.
- ² HILLMAN, W. S. (1969) in *The Induction of Flowering—Some Case Histories*, (Evans, L. T., ed.) p. 186, Macmillan, Melbourne.
- ³ HILLMAN, W. S. (1960) Phyton 14, 49.
- ⁴ PRYCE, R. J. (1973) Phytochemistry 12, 507.

рнуто 12/7—p 1745

tested in bioassays with L. perpusilla. Allogibberic acid (I) is shown to be the GA_3 decomposition product responsible for flowering inhibition, increase in frond multiplication rate and decrease in frond size. 13-Deoxyallogibberic acid (IV) is a more active inhibitor of flowering in L. perpusilla than allogibberic acid and is produced by autoclaving aq. solutions of GA_7 .

RESULTS AND DISCUSSION

Autoclaved, unbuffered aq. GA₃ solutions and their decomposition products were examined for their effects on vegetative growth and inhibition of flowering in *L. perpusilla* in separate groups of experiments. The results are conveniently discussed under separate headings.

Table 1. Effects of autoclaved gibberellic acid and non-autoclaved gibberellic acid on vegetative growth of *Lemna perpusilla* 6746

Test	Composition of test substances*	Concentration of test substances in culture medium† (µg/ml)	Mean frond multiplication rate (No. of new fronds day/frond)§	Estimated mean frond area relative to control
Control		_	0-50	100
Autoclaved GA ₃ ‡	fiso-GA ₃ (IX) Allogibberic acid (I) epiAllogibberic acid (II) Dehydroallogibberic acid (III) GA ₃ (VII) iso-GA ₃ hydroxy acid (XIII) Gibberellenic acid (XI) 0.5	38.5	0.58	25
GA ₃	Unknowns 2.5 J Chromatographically pure	38.5	0.55	75

 ^{*} TLC and GLC analysis.⁴

Vegetative Growth

Results of experiments to determine which decomposition product(s) of autoclaved unbuffered aq. GA₃ solutions increased frond multiplication rate and decreased frond size are presented in Tables 1-3. For these bioassays plants were grown in non-inductive continuous illumination.

Initially, autoclaved unbuffered aq. GA₃ was tested against non-autoclaved GA₃ in the same experiment and the results obtained (Table 1) were in accord with those of Hodson and Hamner;¹ i.e. autoclaved GA₃ has a greater effect than non-autoclaved GA₃ on frond multiplication rate and size. The composition (Table 1) of the autoclaved, unbuffered aq. GA₃ giving rise to these results was determined as preciously described.⁴ The major decomposition products were then tested individually and in the same experiment, at

[†] B Medium-H₂O (24:1).

[‡] Unbuffered aq. GA_3 solution (1 mg/ml) autoclaved at 2 atm. (120°) for 20 min and diluted into culture medium.

[§] Calculated from the equation:

 $[\]log (R+1) = [(\log n_x - \log n_y)/(x-y)];$ when R = multiplication rate as above, n_x and n_y are the number of fronds on the xth and yth days respectively (x > y). Frond numbers were counted on the 4th and 7th days. \parallel Estimated from measurements of photographs.

concentrations approximately equivalent to those at which they were present in the test described above (Table 1), and the result, which is reproducible, is shown in Table 2. Gibberellenic acid (XI) was not tested as it is known to be produced rapidly in aq. GA₃ solutions at room temperature and achieves higher concentrations than that recorded in Table 1 in a few hours. 5 iso-GA₃ hydroxy acid (XIII) was tested at the same concentration as iso-GA₃ (IX) since it is not certain which of these two compounds is actually present, or in what proportion they occur, in aqueous solutions of GA₃ after autoclaving. 4 Of the GA₃ decomposition products tested (Table 2), only allogibberic acid (I) shows any significant and reproducible effect on frond multiplication rate and size and its effect accounts for that observed with autoclaved GA₃ (Table 1). As with autoclaved GA₃, allogibberic acid alone produced the same shortening of the axis and rounding of L. perpusilla fronds.

Table 2. Effects of products of autoclaved gibberellic acid on vegetative growth of *Lemma perpusilla* 6746

Test	Concentration* of test substances in culture medium† (µg/ml)	Mean frond multiplication rate (No. of new fronds/day/ frond)‡ (results of a replicate experiment)	Estimated mean frond area relative to control‡
Control		0.53 (0.51)	100
Allogibberic acid (I)	4	0.63 (0.60)	50
epiAllogibberic acid (II)	2	0.56 (0.46)	100
Dehydroallogibberic acid (III)	2	0.50 (0.54)	100
iso-GA ₃ (IX)§	29	0.54 (0.45)	100
iso-GA ₃ hydroxy acid (XIII)	29	0.54 (0.55)	100
		¶L.S.D. 10%, 0.07	
		5%, 0.09	
		2%, 0.11	

^{*} Concentrations approx. those produced in autoclaved GA₃ tested in Table 1.

Table 3 records the effect of allogibberic acid, autoclaved unbuffered aq. GA₃ and GA₃ each at three different concentrations and in the same experiment, on vegetative growth of *L. perpusilla*. The compositions of the autoclaved aq. GA₃ solution used, prior to its introduction to the culture medium, and the composition of the non-autoclaved GA₃ after being in the culture medium, without *L. perpusilla*, under the test conditions for the 7 day growth period are recorded in Table 3. As in water alone, GA₃ in the mineral medium produced only a small amount of allogibberic acid but only 43% GA₃ remains after this time. Evidently allogibberic acid can account for the observed effects on frond multiplication rate produced by autoclaved GA₃.

[†] B Medium- H_2O (24:1).

[‡] As in Table 1.

[§] Composition by TLC and GLC as in Ref. 4; iso-GA₃ (90%), iso-GA₃ hydroxy acid (4%), GA₃ (6%).

Composition by TLC and GLC as in Ref. 4; iso-GA₃ hydroxy acid (93%), iso-GA₃ (7%).

[¶] By analysis of variance and t-test.

⁵ PRYCE, R. J. unpublished observations.

Table 3. Effects of allogibberic acid, autoclaved gibberellic acid and non-autoclaved gibberellic acid on vegetative growth of *Lemna perpusilla* 6746

Test	Composition of test substances*	Concentration of test substances in culture medium† (µg/ml)	Mean frond multiplication rate (No. of new fronds/day/ frond)‡	Estimated mean frond area relative to control‡
Control Allogibberic			0.50	100
acid	Chromatographically pure	10 1 0·1	0·61 0·68 0·59	25 50 50
Autoclaved GA ₃	Siso-GA ₃ (IX) 68 Allogibberic acid (I) 18 epiAllogibberic acid (II) 8 Dehydroallogibberic acid (III) 2 GA ₃ (VII) 2 iso-GA ₃ hydroxy acid (XIII) 0.5 Gibberellenic acid (XI) 0.5 Unknowns 1	10 1 0·1	0·61 0·58 0·54	50 100 100
GA₃ ►	Siso-GA ₃ 41§ Allogibberic acid 0·5 epiAllogibberic acid 1·5 Dehydroallogibberic acid 0·5 GA ₃ 43 iso-GA ₃ hydroxy acid 0·5 Gibberellenic acid 3 Unknowns 10	10 1 0-1	0.51 0.55 0.54 Least significant value greater than control; 5%, 0.58	100 100 100

^{*} TLC and GLC analysis. 4 Autoclaved GA₃ as in Table 1.

Inhibition of Flowering

The results presented above suggest that because allogibberic acid appears to accentuate meristematic activity of L. perpusilla towards new frond production, i.e. vegetative reproduction, it could be an inhibitor of flowering, i.e. sexual reproduction. This prediction has been tested and shown to be correct. Tests of autoclaved unbuffered aq. GA_3 and its decomposition products on inhibition of flowering in L. perpusilla were carried out in a similar manner to those described above and the results are presented in Tables 4–8. For these bioassays plants were grown in inductive short-days.

[†] B Medium-H₂O (99:1).

[‡] As in Table 1.

[§] Composition of chromatographically pure GA_3 after being in culture medium (less L. perpusilla) at $10 \mu g/ml$ under culture conditions for 7 days growth period. Work-up by acidification with dil. HCl and extraction into EtOAc.

Analysis of variance and t test.

The results in Table 4 show that, as previously found, autoclaved aq. GA_3 is a much more effective flowering inhibitor that non-autoclaved GA_3 . Gallic acid, previously found to be a naturally occurring inhibitor of flowering in Kalanchoe blossfeldiana, was inactive against L. perpusilla at the single, yet high, concentration used.

Table 4. Inhibition of flowering in *Lemna perpusilla* 6746 by autoclaved aqueous gibberellic acid solutions

Test	Composition of test substance* (%)		Concentration of test substance in culture medium† (µg/ml)	Flowering (%)	
Control				77	
Autoclaved‡ GA₃	Allogibberic acid (I) epiAllogibberic acid (II) Dehydroallogibberic acid (III) GA ₃ (VII) iso-GA ₃ hydroxy acid (XIII) Gibberellenic acid (XI)	70 16 7 2 2 1.5 0.5	38.5	0	
GA₃ Gallic acid	Unknowns Chromatographically pure Chromatographically pure	1.0	38·5 38·5	78 76	

^{*} By TLC and GLC analysis.4

Allogibberic acid alone and in combination with the combined other known GA₃ decomposition products was then tested (Table 5) at the concentrations at which they were present in the sample of autoclaved GA₃. (Table 4). The results show that allogibberic acid alone is inhibiting flowering and that the other decomposition products tested are inactive

TABLE 5. INHIBITION OF FLOWERING IN Lemna perpusilla 6746 BY PRODUCTS FROM AUTOCLAYED AQUEOUS GIBBERELLIC ACID SOLUTIONS

Test	Concentration* of test substances in culture medium† (µg/ml)	Flowering (%) (Result of replicate) experiment)
Control		77 (76)
iso-GA ₃ ‡ + epiAllogibberic acid + Dehydroallogibberic acid	$\left\{\begin{array}{c}27\\3\\1\end{array}\right\}$	71 (82)
iso-GA ₃ hydroxy acid†	27	71 (93)
Allogibberic acid	6	41 (67)
Allogibberic acid + iso-GA ₃ † + epiAllogibberic acid + Dehydroallogibberic acid	$\left.\begin{array}{c} 6\\27\\3\\1\end{array}\right\}$	25 (39)

^{*} Concentrations approx. those produced in autoclaved GA₃ tested in Table 4.

[†] H Medium-H₂O (24:1).

¹ Autoclaved as in Table 1.

[†] H Medium- H_2O (24:1).

[‡] Composition as in Table 2.

⁶ PRYCE, R. J. (1972) Phytochemistry 11, 1911.

but appear to enhance the inhibitory effect of allogibberic acid. Gibberellenic acid (XI) was not tested and *iso*-GA₃ hydroxy acid (XIII) was tested at the same concentrations as *iso*-GA₃ for reasons given above.

The apparent enhancement of the allogibberic acid flowering inhibition was investigated further by analysing all the decomposition products of autoclaved aq. GA_3 in all possible combinations with allogibberic acid (Table 6). It is evident from the results that no single decomposition product of autoclaved GA_3 gives any particular enhancement to the allogibberic acid flowering inhibition but all the decomposition products together give maximum enhancement. This enhancement is apparently not due to a decrease in the medium pH alone (Table 6) but pH may have some contributory effect.

Table 6. Inhibition of flowering in *Lemna perpusilla* 6746 by allogibberic acid in combinations with other degradation products from autoclaved aqueous gibberellic acid solutions

Test*	Concentration† of test substances in culture medium‡ (µg/ml)	pH of culture medium plus test substances	Flowering (%)
Control		6.20	87
Allogibberic acid (I)	6	6.17	63
$(I) + iso$ - GA_3 hydroxy acid	6 + 27		73
$(I) + iso$ - GA_3	6 + 27	6.02	58
(I) + epiallogibberic acid	6 + 3	6.16	64
(I) + dehydroallogibberic acid	6 + 1	6.16	51
$(I) + iso$ - $GA_3 + epiallogibberic acid$	6 + 27 + 3	6.01	55
(I) + iso-GA ₃ + dehydroallogibberic acid (I) + epiallogibberic acid + dehydroallogibberic	6 + 27 + 1	6.01	40
acid (I) + iso-GA ₃ + epiallogibberic acid +	6 + 3 + 1	6.15	53
dehydroallogibberic acid	6+27+3+1	6.00	32

^{*} iso-GA₃ and iso-GA₃ hydroxy acids' purity as noted in Table 2—other substances were chromatographically pure.

The flowering inhibitory activity of allogibberic acid is compared (Table 7) with that of autoclaved aq. GA_3 , having the indicated composition, both over the same concentration range. These results, together with those above, confirm that allogibberic acid alone can account reasonably well for flowering inhibition of autoclaved aq. GA_3 . The cut-off point in the flowering inhibition of allogibberic acid in *L. perpusilla* lies between concentrations of 1 and 10 μ g/ml in the medium.

Hodson and Hamner have also shown¹ that autoclaved, unbuffered aqueous solutions of an unspecified mixture of gibberellins A_4 (XIV) and A_7 (VIII) were about 10 times more inhibitory to flowering in *L. perpusilla* than the corresponding solutions from GA_3 . It seemed that GA_7 would give rise to analogous decomposition products to GA_3 ,⁴ and examination of the decomposition products of autoclaved, unbuffered aq. GA_7 (admixed with GA_4 [15%]) by GLC and GLC-MS has confirmed the presence of 13-deoxyallogibberic acid (IV). GA_4 , which lacks a 1,2-double bond, would not be expected to be as labile to decomposition on autoclaving in aqueous solution as GA_7 and GA_3 . 13-Deoxyallogibberic

[†] Concentrations approximately those produced in autoclaved GA₃ tested in Table 4.

[‡] H Medium-H₂O (24:1).

acid has not previously been reported in the literature but it has been obtained as a minor component (25%) of a mixture with its $\Delta^{15,16}$ -isomer (XV) (75%). It was prepared here (78% pure) by aqueous decomposition of 13-deoxygibberellenic acid (XII) in an analogous manner to that indicated for the preparation of allogibberic acid. A sample of 13-deoxygibberellenic acid (XII) was prepared from GA_7 in the same way as for gibberellenic acid (XI) from GA_3 .

TABLE 7. INHIBITION OF FLOWERING IN Lemna perpusilla 6746 BY ALLOGIBBERIC ACID AND AUTOCLAVED AQUEOUS
GIBBERELLIC ACID SOLUTIONS

Test	Composition of test substance* (%)	substance* in culture	
Control			77
Allogibberic	Chromatographically pure	10	36
acid		1	65
		0.1	81
		0.01	84
Autoclaved‡ GA ₃	Siso-GA ₃ (IX) 63 Allogibberic acid (I) 19 epiAllogibberic acid (II) 9 Dehydroallogibberic acid (III) 3 GA ₃ (VII) 2 iso-GA ₃ hydroxy acid (XIII) 2	10 1 0-1 0-01	75 79 80 90
	Gibberellenic acid (XII) Unknowns CAT 1946 Gibber 1956 CAT 1967 CAT 196	VOI	90

^{*} By TLC and GLC analysis.4

The results in Table 8 show that 13-deoxyallogibberic acid is ca. 10 times more active as a flowering inhibitor in the L. perpusilla test than allogibberic acid. Therefore, since Hodson and Hamner¹ had shown previously that their product of autoclaving an aqueous solution of GA_7 (admixed with an unspecified amount of GA_4) was ca. 10 times more active in the L. perpusilla test than autoclaved GA_3 solutions, 13-deoxyallogibberic acid could account for the flowering inhibition produced. 13-Deoxyallogibberic has an even greater effect on reduction of frond size than allogibberic acid at equivalent concentrations. A sample of 13-deoxy iso- GA_3 (X) was also tested, at the maximum possible concentration with available material, and shown to be inactive (Table 8) like its GA_3 -derived analogue (IX) (Table 5).

Thus, allogibberic acid (I) has been shown to be the decomposition product present in autoclaved, unbuffered aqueous solutions of GA_3 (VII) responsible for the observed inhibition of flowering, increase in frond multiplication rate and decrease in frond size of the duckweed L. perpusilla. Whatever systems of the duckweed respond to allogibberic acid they must have some degree of structural specificity since the 9-epimer, epiallogibberic acid (II) and $\Delta^{9,11}$ -dehydroallogibberic acid (III) are inactive at the concentrations used. On

[†] H Medium-H₂O (99:1).

[‡] Autoclaved as in Table 1.

⁷ Cross, B. E., personal communication of unpublished results.

⁸ GROVE, J. F. and MULHOLLAND, T. P. C. (1960) J. Chem. Soc. 3007.

the other hand, 13-deoxyallogibberic acid (IV), a product of autoclaving aq. GA_7 (VIII), is more active than allogibberic acid. The evidence above suggests that 13-deoxyallogibberic acid could account for all the flowering inhibitory activity found¹ to be caused by autoclaved, unbuffered aqueous solutions of a mixture of GA_7 and GA_4 .

Table 8. Inhibition of flowering in Lemna perpusilla 6746 by allogibberic acid and 13-deoxyallo-
GIBBERIC ACID

Test	Concentration of test substances in culture medium* (µg/ml)	Flowering (%)	Test	Concentration of test substances in culture medium* (µg/ml)	Flowering
Control	_	81	13-Deoxyallogib-	10†	0
			beric acid (IV)†	1.0	32
Allogibberic acid (I	10	20	, , ,	0.1	71
	1.0	77			
	0.1	78	iso-GA ₇ (X)	10	80

^{*} H Medium

The results above and those previously published4 emphasize the need for caution in interpreting the results of biological assays: the compounds tested may change during, or even before the test. In this instance, the test substance, GA3 is very labile in the medium (water) in which it is generally applied and gives rise inter alia to allogibberic acid which has markedly different biological properties; only 1-2% GA₃ remains after autoclaving under usual conditions.⁴ Most of the aqueous decomposition products of GA₃ have been found to have 'gibberellin-like' biological activity per se which is generally lower than that of GA₃ (Ref. 4 and references therein). Allogibberic acid is more active than GA₃ in the lettuce radicle elongation test⁹ and while both compounds delay flowering in the pea (Pisum sativum) the allogibberic response does not include the stem elongation produced with GA₃. ¹⁰ GA₃ has been reported to inhibit photoperiodically-induced flowering, increase frond multiplication rate and decrease frond size in the long-day duckweed Lemna gibba G3.11 While the authors of this latter report seemed aware of some possible decomposition of GA₃ on autoclaving (see Ref. 4) the possibility that the observed biological activity was due to GA₃ decomposition products was not considered. Allogibberic acid could well be the active substance affecting L. gibba G3 by analogy with its effects on L. perpusilla.

The results above, combined with the ease with which allogibberic acid is formed from GA_3 even at room temp. (Ref. 4 and references therein) suggest that allogibberic acid might be a natural product with a specific regulatory role. Allogibberic acid has not yet been isolated from, or detected in, any green plant and before it could be claimed to be a natural product an isolation would have to be devised which excluded the possibility that it is formed during work-up.

^{† 13-}Deoxyallogibberic acid (78%) by TLC and GLC analysis—see text. Concentrations tested were corrected for impurities amounting to 22%.

⁹ PALEG, L., ASPINALL, D., COOMBE, B. and NICHOLLS, P. (1964) Plant Physiol. 39, 286.

¹⁰ MURFET, I. and BARBER, N. (1961) Nature 191, 514.

¹¹ CLELAND, C. F. and BRIGGS, W. S. (1969) Plant Physiol. 44, 503.

EXPERIMENTAL

Compounds bioassayed were obtained as previously described⁴ or were donated in the case of dehydroallogibberic acid and *iso*-GA₇. 13-Deoxyallogibberic acid was prepared as described below. GA₃ and GA₇ were autoclaved as previously described.⁴ GLC and GLC-MS on OV17 and XE60 columns were performed as previously described.⁴

L. perpusilla 6746 bioassays. Stock cultures were grown in continuous illumination from Philips 'daylight' fluorescent lights (4000 1x at plant ht) at $23-24.5^{\circ}$ in sterile culture medium B or H (100 ml) in plugged conical flasks (250 ml). New stock cultures were started ca. every 7 days. Plants grew apparently non-contaminated under these conditions. B medium refers to an entirely mineral medium described by Bischoff and Bold¹²—'Bold's basal medium'. H medium is half-strength Hutner's medium containing 1 % sucrose as described by Hillman² except that KNO₃ replaces NH₄NO₃ at the same molar concentration. 13 The plants growing on B medium became overgrown with microorganisms when grown on H medium; these stock cultures were used only for the vegetative growth bioassays. Plants growing apparently non-contaminated on H medium were used exclusively for the flowering bioassays. All biosssays were prepared in a similar manner. Culture media (25 ml) were sterilised by Millipore filtration and dispensed directly into sterile conical flasks (50 ml). Test substances were administered either by evaporating EtOH solutions of the substances in the test flasks with a stream of sterile-filtered N₂ prior to addition of the medium, or addition of measured vol. of autoclaved or Millipore-filtered aq. solutions to the medium. Whenever some tests in an experiment required addition of test substances in H₂O, all other tests in that experiment used culture media similarly diluted (see footnotes to Tables). Test and appropriate control cultures were started from one 3frond colony taken from 6 to 8-day-old stock cultures.

Bioassay of vegetative growth effects (Tables 1-3). Test and control cultures (4 replicates of each) on B medium were grown for 7 days in continuous illumination from Philips 'daylight' fluorescent lights (4800 1x at plant ht) at 24-26°. Frond numbers were counted on the 4th and 7th days. On the 7th day cultures were tipped out into Petri dishes and photographed; measurements of enlargements of these photographs were used to estimate frond area.

Bioassay of flowering inhibition (Tables 4-8). Test and control cultures (3 replicates of each) on H medium were grown for 10 days under short-day photoinductive conditions; 8 hr illumination per day from Philips 'daylight' fluorescent lights (5000 lx at plant ht) at 24-26°. A sample (ca. 20) of fronds from each replicate of each test were then examined by microscopic dissection and each frond was scored as either flowering or vegetative—early stages of flowering were scored as flowering. Flowering percentages quoted are the percentage number of fronds flowering per total number of fronds examined per test.

13-Deoxyallogibberic acid (IV) and the decomposition of unbuffered aq. GA₇ on autoclaving. GA₇ (containing 15% GA₄) (100 mg) was refluxed with hydrazine hydrate (1 ml) for 30 min then the reaction mixture was poured into H₂O (10 ml). The diluted reaction mixture was cooled in ice and stirred during acidification with conc. HCl prior to extraction with EtOAc (5 × 10 ml). The EtOAc extract was dried (Na₂SO₄) and evaporated to dryness in vacuo to give a gum (95 mg), UV spectrum $\lambda_{\text{max}}^{\text{EiOH}}$ 255 nm [cf. gibberellenic acid (XI), $\lambda_{\text{max}}^{\text{EtOH}}$ 253 nm¹⁴]. An aliquot of this product was methylated (CH₂N₂) and analysed by GLC [major observed product (ca. 90%), OV17 (190°) R, 13.7 min, XE60 (180°) R, 16.4 min] and GLC-MS (major observed product; P+ at m/e 358). These data on the major product of the hydrazine reaction were consistent with its being 13-deoxygibberellenic acid (XII) (Me ester: MW 358). The crude hydrazine reaction product (94 mg) was dissolved in H₂O (94 ml) and the solution was flushed with N₂ at room temp. for 15 min before boiling it for 1.5 hr under N₂. After boiling, the solution was cooled in ice to room temp., adjusted to pH 3 with 4 N HCl then extracted with CHCl₃ (4 \times 25 ml). The CHCl₃ extract was dried (Na₂SO₄) and evaporated in vacuo to a gum (60 mg) which was subjected to preparative TLC [using two, twice EtOH washed 20 imes20 cm × 250 µm Merck SiO₂ F₂₅₄ plates, developing solvent EtOAc-CHCl₃-HOAc (15:5:1)—the band at R_f 0.6-0.65 was extracted with EtOAc]. An aliquot of the product, a gum (25 mg), was methylated (CH₂N₂) and analysed by GLC [major observed product (78%), OV17 (190°) R_t 2.7 min, XE60 (180°) R_t 2.2 min; two minor observed products a (17%) and b (5%) OV17 (190°) R_t s 2·3 and 3·7 min respectively, XE60 (180°) R_t s 1·8 and 3·0 min respectively] and GLC-MS (major observed product P⁺ at m/e 282). The retention times of the major component were identical with those of the minor component of a mixture of 13-deoxyallogibberic acid (IV) (25%) and its $\Delta^{15,16}$ -isomer (XV) (75%) [Me ester of (XV) GLC-OV17 (190°) R_t 2.4, XE60 (180°) R₁ 1.7 min—cf. (IV) above] prepared by refluxing GA₇ in THF with dil. HCl, and their MS were also identical. The major hydrolysis product was therefore 13-deoxyallogibberic acid (IV). The minor products were probably a, 13-deoxyepiallogibberic acid (V) (a, Me ester P^+ at m/e 282) and b, 13deoxydehydroallogibberic acid (VI) (b, Me ester P+ at m/e 280) by analogy with reactions of gibberellenic acid (XI).4

An aq. solution of GA₇ (containing GA₄ 15%) (1 mg/ml) was autoclaved for 20 min at 2 atm. and 120°

¹² BISCHOFF, H. W. and BOLD, H. C. (1963) University of Texas Publication No. 6318.

¹³ HILLMAN, W. S. and POSNER, H. B. (1971) Plant Physiol. 47, 586.

¹⁴ MOFFAT, J. S. (1960) J. Chem. Soc. 3045.

then evaporated to dryness in vacuo at 30°. GLC and GLC-MS analysis of an aliquot of this autoclave-product confirmed the presence of 13-deoxyallogibberic acid along with the substance a (probably 13-deoxydehydroallogibberic acid) above together with several unidentified products. These three products were anticipated autoclaving products from aq. GA_7 by analogy with the known GA_3 decomposition on autoclaving.⁴

Acknowledgements—I thank Dr. B. E. Cross for samples of dehgdroallogibberic acid and 13-deoxyallogibberic acid (admixed with its $\Delta^{15,16}$ -isomer). iso-GA₇ was a gift from Dr. J. MacMillan and the samples of GA₃ and GA₇ were a gift from I.C.I. Ltd. Professor J. W. McClure kindly donated starting cultures of Lemna perpusilla 6746. GLC-MS was carried out by Messrs. David Green and Tony Wilkinson.